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Filtering raw biomechanical data to remove noise is a key first step that must 
be performed prior to further biomechanical analysis.  Raw biomechanical data 
are usually filtered to remove noise above a specified cutoff frequency, a pro-
cess known as “low pass filtering”.  The concept of frequency content within a 
signal may be difficult for students to grasp, and authors of biomechanics text-
books often use Fourier series approximations to introduce this concept.  To 
facilitate student learning, we have created an Excel spreadsheet that allows 
students to observe several orders of Fourier series approximations to a repre-
sentative set of biomechanical data.  In this paper, we provide a short tutorial 
on Fourier series approximations and instructions for using the Excel spread-
sheet.  The Fourier series coefficients are determined iteratively with a first-
principles approach of minimizing the sum of squared error between the origi-
nal data and the approximation using the Solver function in Excel.  The user 
can reset these coefficients and run Solver to observe the iterative process.  
This first-principles approach may be helpful in a broad range of applications 
because it allows users to perform non-linear regression within an Excel 
spreadsheet.  The Excel spreadsheet also includes a fourth-order zero-lag 
Butterworth low pass filter with adjustable cutoff frequency so that the effects of 
filtering can be observed and compared with the Fourier series approximations.  
We believe this tutorial and Excel spreadsheet will be helpful to those teaching 
and learning digital signal processing in biomechanics.  KEYWORDS: Butter-
worth, Excel, filter, Fourier, frequency, noise, solver, spreadsheet.  
Reprint pdf · Reprint doc · Spreadsheet.xls · Spreadsheet.xlsx 

 
Update 5 Sept 15:  The first spreadsheet was in xls format 
for Excel 2003 and earlier. We recently became aware that 
the scroll bars were not working in more current versions 
of Excel. We have added an updated spreadsheet in xlsx 
format which should function properly in Excel 07-13.  

Update 3 April 10:  The Butterworth, Velocity and Ac-
celeration, and Comparison spreadsheets now include 
sliding scroll bars to change the cutoff frequency rapidly 
and sequentially.  This change should enhance the learning 
experience. 

Update 13 June 09:  Correction of expressions for the 
2nd and Nth order Fourier approximations in the article.  
Spreadsheet needed no correction. 

Filtering raw biomechanical data (e.g., posi-
tion, ground reaction force) to remove noise is a 
key first step that must be performed prior to 
further analysis such as determining velocity 
and acceleration or performing inverse dynamic 
calculations of joint torque.  Most techniques 
for filtering raw biomechanical data are de-

signed to remove noise above (low pass filter-
ing) or below (high pass filtering) a specified 
cutoff frequency.  Although low frequency 
noise and high pass filtering are used in some 
biomechanical applications (e.g., EMG) this 
paper and the related spreadsheet will deal only 
with low pass filtering and will use the Butter-
worth low-pass filter (Winter, 2005).  Regard-
less of the type of filter used, the student must 
grasp the concept that data contain components 
that occur at various frequencies.   

Several authors of biomechanics textbooks 
(e.g., Enoka, 2008; Griffiths, 2006; Robertson 
et al., 2004; Winter, 2005) introduce the notion 
of frequency content in data within the context 
of a Fourier series approximation.  This tech-
nique can be used to approximate data repre-
senting any movement cycle that occurs over a 
known time interval (T) or at a known frequen-
cy (f = 1/T) by summing a series of trigonomet-
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ric functions (sine or cosine).  For example, T 
might represent the time for one complete gait 
or pedal cycle and f would be the stride or ped-
aling frequency.  Fourier series approximations 
are described in many textbooks and we rec-
ommend the reader consult a favorite math or 
biomechanics textbook for a full treatment of 
the topic.  In this paper, we will provide a brief 
description and demonstrate Fourier series ap-
proximations using sample pedal reaction force 
(PRF) data in an Excel spreadsheet.  The data 
represent a pedaling rate of 120 rpm, or a 
movement frequency of 2 Hz, and were record-
ed at a sampling rate of 240 Hz. The Excel 
spreadsheet includes columns for time, raw 
PRF data, approximated PRF data, and a 
squared error term (SE).  Fourier series coeffi-
cients were determined iteratively by minimiz-
ing the sum of squared error (SSE) between the 
raw PRF data and the Fourier approximation.  
The Excel spreadsheet also includes a fourth-
order zero-lag Butterworth filter with adjustable 
cutoff frequency.  In one tab (“Comparison”), 
the filtered PRF data can be compared to sever-
al orders of Fourier series approximations.  
Finally, a set of kinematic data was used to 
illustrate the importance of filtering when data 
are to be differentiated to determine velocity 
and acceleration terms.   

We have used this Excel spreadsheet to teach 
graduate and honors undergraduate biomechan-
ics courses and have found that it facilitates 
hands-on learning of a topic that can be quite 
abstract.  We believe that this paper and related 
Excel spreadsheet will be useful as a teaching 
tool in higher education and will be helpful for 
anyone interested in analyzing biomechanical 
data who does not have a strong background in 
digital signal processing.  The Excel spread-
sheet may also be helpful to many other spread-
sheet users because it demonstrates a general 
method for determining any type of regression 
coefficients (including non-linear) using the 
first-principles approach of minimizing sum of 
squared error.  Please note that this spreadsheet 
and the instructions were derived using Excel 
from Office 2003 and newer versions of Excel 
may function differently.  Also, help with the 
solver function is available from this link at the 
Microsoft website. 
Fourier Series Approximation 
Zero Order 

The most basic approximation to a signal 

(e.g., position, force) is the mean of that signal 
over the entire time interval.  In the Fourier 
series approximation the mean is referred to as 
the zero order approximation and given the 
coefficient a0.  A zero order approximation to a 
signal would be written, for example, as X(t) = 
a0, where t represents time.  The mean will give 
some information about the signal but it will 
provide no detail about the variation of the 
signal within the movement (at any specific 
point in time).  Thus, the a0 coefficient is not 
generally used by itself but rather in combina-
tion with higher order coefficients.   
First Order and Basic Ideas 

Many movement patterns are generally si-
nusoidal in nature (e.g., limb kinematics during 
gait) and thus a sine function may provide a 
reasonable approximation to the movement: 
X(t) = sin(t).  In this case, the time variable “t” 
refers to the instantaneous time at a point within 
the movement.  That time value must be scaled 
to the overall time (T) or frequency (f = 1/T) of 
the movement (Figure 1).  That is, instead of 
absolute time, the expression for the sine func-
tion must represent t/T to represent a relative 
time within the cycle.   

Further, the input to a sine function must be 
an angle, so the time variable must be expressed 
as a portion of a complete angular cycle (2π) 
and the variable becomes 2πt/T so that X(t) = 
sin(2πt/T).  In this way, a complete cycle of a 
sinusoid is generated as “t” goes from 0 to T.  
The signal might not oscillate equally above 
and below zero but rather above and below the 
mean value (a0) and thus the approximation will 
be improved by adding the mean to the sine 
function:  

X(t) = a0 + sin(2πt/T).   
The sine function must also be modified to 

take into account the amplitude (a1) of the 
movement (how far above and below the mean 
the movement oscillates; Figure 1) so the ap-
proximation becomes:  

X(t) = a0 + a1sin(2πt/T).   
Finally, the movement may not follow a true 

sine function in that it may not be zero at the 
initial point of the cycle.  To correct for such an 
offset, the angle within the sine function should 
be corrected by adding some offset value θ1 
(Figure 1).  Thus, the equation for a 1st order 
Fourier series approximation is:  

X(t) = a0 + a1sin(2πt/T+θ1).   
This is termed a 1st order approximation, be-
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cause it only includes the frequency of the 
overall movement.    The meanings and func-

tions of variables T, a0, a1, and θ1 are illustrated 
in Figure 1. 

 
Figure 1: First order approximation with variables illustrated. The mean of the raw data is 
a0, the amplitude of the sinusoidal variation in the signal is a1, the time for the whole 
movement cycle is T, and the angle θ1 (theta1) shifts the sine function along the time axis 
to coincide with the original data. 
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Figure 2: Installing Solver function in 
Microsoft Excel.  The reader will need to 
have Solver installed to determine Fouri-
er coefficients. To install select the Tools 
menu, then click Add-in, check Solver 
Add-in, and click OK.  For troubleshoot-
ing use the Microsoft Excel Help feature 
and search for “Load Solver Add-in”. 
Additional help with Solver can be found 
at this Microsoft link. 

 
 
In the Excel spreadsheet, the tab labeled 1st 

Order illustrates this approximation.  The coef-
ficients (a0, a1, and θ1) were determined itera-
tively using the Solver function in Excel.  Note 
that the a0 coefficient determined by the Solver 
function is equal to the arithmetic mean of the 
raw data (shown in cell G9 of the 1st Order tab).  

The Solver function must be installed as an 
Add-in (Figure 2; select Tools menu; click 
Add-in, check Solver Add-in, click OK).  The 
reader can examine the workings of this func-
tion by entering some other values in cells G5-
G7 (e.g., 0’s) and then using Solver to achieve a 
minimum value of the sum of squared error 
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term (SSE; cell E2; highlighted in red).  Solver 
will do this by changing coefficient values in 
cells G5-G7 (highlighted in yellow) to mini-
mize the sum of squared error term.  From the 
tools menu select Solver and the Solver dialog 
box will appear (Figure 3).  Once the correct 
cells and “Min” criterion are selected, click the 
solve button and the coefficients will be deter-

mined iteratively.  Note that this first order 
approximation captures a great deal of the char-
acter of the PRF data with an r2 value of 0.94.  
Such a high agreement is characteristic for most 
kinetic and kinematic data associated with cy-
cling, which is generally sinusoidal in nature.  
Other activities, such as gait, may be less well 
represented by the first order approximation.  

 
Figure 3:  Using the Solver function to determine Fourier coefficients for a 1st order approximation.  The 
“target cell” refers to the sum of squared error term ($E$2; highlighted in red in the Excel spreadsheet) 
and cells to be changed ($G$5:$G$7; highlighted in yellow in the Excel spreadsheet) refer to the Fourier 
coefficients.  Checking “Min” instructs Solver to iteratively determine coefficients that will minimize the 
sum of squared error term. Refer to the 1st Order tab in the Excel spreadsheet. 

 
 

Higher Order Approximations 
Fourier approximations are based on harmon-

ics, or multiples of the central frequency of the 
movement.  In this particular data set, the cen-
tral frequency was 2 Hz. Thus each harmonic is 
2 Hz and each multiple of that harmonic repre-
sents frequencies within the movement. That is, 
patterns that oscillate once within the move-
ment occur at the central frequency, patterns 
that oscillate twice within the movement occur 
at twice the central frequency, and so on.  In the 
spreadsheet tabs labeled 2nd Order, 3rd Order, 4th 
Order, and 10th Order, higher order Fourier 
series approximations have been formed for the 
same PRF data as used in the 1st order approxi-
mation.  The higher order approximations in-
clude sinusoidal functions of additional multi-
ples of the central or fundamental frequency.  
For example, the 2nd order approximation is 
calculated from the equation: X(t) = a0 + 
a1sin(2πt/T+θ1) + a2sin(4πt/T+θ2).  The 4πt/T 

term in the second sine function represents the 
proportion of time within a cycle at twice the 
overall frequency of movement. Thus, the gen-
eral form of the Fourier approximation for the 
Nth order is: X(t) = a0 + a1sin(2πt/T+θ1) + 
a2sin(4πt/T+θ2) + …+ aNsin(2Nπt/T+θN). 

The additional frequencies allow the higher 
order approximations to follow additional nu-
ances of the original signal.  As series order is 
increased the approximations tend to converge 
upon the raw PRF data (Figure 4).  Indeed, the 
4th order approximation captures most of the 
nuances of the raw PRF data (r2 > 0.99).  Be-
cause these PRF data have a movement fre-
quency of 2 Hz, each additional order of ap-
proximation accounts for an additional 2 Hz in 
signal frequency content (2 Hz for the 1st order 
approximation, 4 Hz for the 2nd order, 6 Hz for 
the 3rd order, etc).  As with the 1st order approx-
imation, the reader can reset the coefficients to 
zero and use Solver to determine them again.  
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Additional cells must be changed by the Solver 
tool for the higher order approximations (e.g., 
G5-G9 for 2nd Order, G5-G11 for 3rd Order, 
etc.) and in each tab the appropriate cells are 
highlighted with a yellow background.  The 

appropriate cells should appear in the Solver 
dialog box (because they have been used previ-
ously in the building of the spreadsheet) but the 
reader should check that the cell references 
include all coefficients.  

 
Figure 4:  Fourier series order.  As Fourier series order is increased the approxi-
mations converge upon the raw PRF data.  Refer to the Comparison tab in the 
Excel spreadsheet. 
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The spreadsheet can be used to examine the 

functions of the Fourier coefficients by per-
forming the following exercise.  In the 1st Order 
tab, reset the a0 coefficient to a vale of zero.  
When this change is made, the approximated 
data will oscillate about zero, rather than about 
the mean demonstrating that the a0 coefficient 
forces the approximation to vary about the 
mean.  As mentioned above, the reader may 
note that the a0 coefficient is the same as the 
mean for the raw PRF data (cell G9).  Once the 
effect has been observed, the reader may use 
the “undo” function (select edit; click on undo) 
to restore the coefficients or may use solver to 
reestablish them. Second, the reader may reset 
the a1 coefficient to zero and will note that the 
approximation becomes a straight line equal to 
the mean.  This demonstrates that the a1 coeffi-
cient represents the amplitude of the excursion 
above and below the mean.  Next, the reader 
may set the θ1 coefficient to zero and will note 
that the approximated data is shifted horizontal-
ly relative to the raw data.  This will demon-
strate that the function of the θ1 coefficient is to 
adjust the relative position of the sine function.  
These effects are also illustrated in Figure 1.  

Additionally, in the 2nd Order tab, setting the a1 
coefficient to zero will reveal the effect of the 
a2 coefficient which causes the approximation 
to oscillate at twice the central frequency (twice 
with the movement cycle).  This is only a brief 
exercise and the reader may wish to explore 
other coefficients and tabs.  
General Method 

We have used Solver to determine coeffi-
cients that minimize the sum of squared error 
term between the original data and the modeled 
approximation.  This technique can be used to 
determine coefficients for any linear or non-
linear approximation.  To do this, one simply 
writes an equation for the model of choice 
which includes coefficients and independent 
variables (column “C” in our approximation 
spreadsheets).  That equation should be “filled 
down” a column of an Excel spreadsheet so that 
an approximation is calculated for each data 
point.  Further, a set of cells should be used as a 
location for the coefficients (column “G” in our 
spreadsheet).  Any value can be selected for the 
initial coefficients (e.g., 0’s or 1’s).  In the next 
column, one should form a squared error term 
as the difference in the raw value and the ap-
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proximation squared (column “D” in our 
spreadsheet).  All of these squared error terms 
are then summed to form the sum of squared 
error term (cell “E2” in our spreadsheet).  Solv-
er performs an iterative process to determine 
coefficient values that minimize this sum of 
squared error term.  We have used this tech-
nique to determine coefficients for functions as 
basic as quadratic equations and as specialized 
as a Hill type force-velocity equation (rectangu-
lar hyperbola).  The interested reader will likely 
find many applications for this technique.   
Butterworth Filter    

The fourth-order zero-lag Butterworth filter is 
often used in biomechanical analyses and is 
described in detail by Winter (2005).  Briefly, 
this filter produces a weighted average of data 
from several time points and the weight on each 
time point (the a0, a1, a2, b1, b2 coefficients) 
determines the cutoff frequency (the frequency 
above which noise is removed).  Note that these 
Butterworth coefficients are not related to the 
Fourier approximation coefficients of similar 
names.  In our example filter, the weighted 
average includes the point of interest as well as 
the two preceding time points.  This process of 
averaging time points prior to the time of inter-
est causes the filtered data to “lag” behind the 
raw with respect to time.  To correct for this 
lag, data are filtered once in forward time order, 
then again in reverse time order to produce 
filtered data that are properly aligned in time.  
In addition to correcting for lag, the second 
filtering in the reverse direction creates a sharp-
er cutoff and this two-pass filter is referred to as 
a fourth-order zero-phase shift (or zero-lag) 
filter.  We encourage the reader to consult a 
textbook (e.g., Winter 2005) for a thorough 
treatment of Butterworth filter.  In the Excel 
spreadsheet tab labeled Butterworth, we have 
implemented just such a filter.  We will not 
present the details of this filtering technique in 
this paper but rather provide it to illustrate the 
effects of filtering the PRF data at various cut-
off frequencies and to allow the reader to ex-
plore the similarities and differences between 
Fourier series approximations and filtered data.  
The Butterworth coefficients (K1, K2, K3, a0, a1, 
a2, b1, b2) are calculated in the spreadsheet as 
described by Winter (2005, page 47).  The a 
and b coefficients are the weights applied to the 
data.  The K coefficients are used to calculate 
the a and b coefficients based on the desired 

cutoff frequency and the known sampling fre-
quency.  The reader can change the cutoff fre-
quency simply by changing the value in cell D2 
(highlighted with a yellow background).  As an 
exercise, we encourage the reader to observe 
data filtered at a range of cutoff frequencies 
from 1 to 16 Hz.  As the cutoff frequency in-
creases, the filtered data will more closely ap-
proximate the raw data, including the inherent 
noise.  Some intermediate cutoff frequency 
(e.g., 8 Hz) will “pass” the signal through while 
filtering the higher frequency noise.  Determin-
ing the proper cutoff frequency for any specific 
data set requires knowledge of the signal and 
noise and goes beyond the intended scope of 
this paper.  The interested reader may see one 
technique for determining cutoff frequency in 
Winter (2005).   
Velocity and Acceleration 

It is common practice to perform finite dif-
ferentiation of position data to obtain values for 
velocity and acceleration of limb segments 
(velocity equals change in position divided by 
change in time, and acceleration equals change 
in velocity divided by change in time).  There-
fore, we have also implemented a fourth-order 
zero-lag Butterworth filter in the tab labeled 
Velocity and Acceleration.  For this tab we used 
kinematic data for foot angle during cycling 
(movement frequency 2 Hz, sampled at 240 
Hz).  The reader may note that even the unfil-
tered data appear to be quite smooth (smoother 
than the raw PRF data) and one might believe 
that the raw kinematic data could be used for 
subsequent analyses.  However, as demonstrat-
ed in Figure 5 and in the Excel spreadsheet, the 
effects of filtering on angular velocity (ω) and 
acceleration (α) are much more dramatic and 
these comparisons serve to underscore the im-
portance of properly filtering data prior to dif-
ferentiation.  Note that these angular velocity 
and acceleration data were obtained by finite 
differentiation of the filtered position data, not 
by filtering the differentiated raw data.  Filter-
ing the raw position data removes a smaller 
magnitude of noise and should provide more 
accurate derivatives.   
Fourier vs Butterworth    

In the tab labeled Comparison, we have im-
plemented a fourth-order zero-lag Butterworth 
filter and linked to the Fourier series approxi-
mations (every other point has been omitted to 
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reduce overlap in the figure).  As with the other 
filters, the cutoff frequency can be adjusted by 
simply typing a value in cell I2 (highlighted 
with a yellow background).  This will facilitate 
an exploration of frequency content by compar-
ing various values of cutoff frequency with the 
calculated Fourier series approximations.  Note 
that in our data the movement frequency was 2 
Hz and so the 4th order approximation generally 
includes data up to 8 Hz.  When the cutoff fre-
quency for the Butterworth filter is set 8 Hz, the 
data essentially overlap those of the 4th order 
approximation.  Although the filtered data and 
approximation data are quite similar they are 
not identical.  The differences arise mainly for 
two reasons.  First, the Butterworth filter allows 
some noise above the cutoff frequency and 
eliminates some signal below the cutoff fre-
quency (Winter, 2005).  For additional infor-

mation on the “sharpness” of a cutoff frequen-
cy, we direct the interested reader to Figure 
1.26 in Enoka (2008), and for a comparison of 
2nd vs. 4th order Butterworth filter, to Figure 
4.16 in Bartlett’ (2008).  Secondly, the Fourier 
approximation only includes discrete frequen-
cies that are integer multiples of the central 
frequency, whereas the actual signal as well as 
the Butterworth filtered signal include a contin-
uous spectrum of frequencies.  Thus, while 
filtering at a cutoff frequency of 8 Hz produces 
similar data to those obtained with a Fourier 
approximation they are not identical and should 
not be confused.  Also, in some cases a Fourier 
Transform procedure can be used as a filtering 
technique but that technique is a different from 
what we have done in our spreadsheet and we 
do not intend to discuss that in this manuscript.   

 
Figure 5:  Effects of filtering on foot angular velocity (top) and acceleration 
(bottom).  Errors in acceleration can be many times greater than in position.  
Refer to the Velocity and Acceleration tab in the Excel spreadsheet. 
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Conclusion 

We believe this brief tutorial and Excel 
spreadsheet will facilitate learning in graduate 
and upper division undergraduate biomechanics 
courses.  How it will ultimately be used will 
depend on the curiosity and background of the 
reader.  We do not intend this paper and Excel 
spreadsheet to be all encompassing but rather to 
be one helpful aid to understanding of digital 
signal process within a biomechanics course.  
An added benefit is that the general method 
used to determine the Fourier coefficients can 
be used to determine the coefficients for any 
linear or non-linear model within an Excel 
spreadsheet.  
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